高中数学公式大全(高中数学公式大全 完整版)

admin 2年前 (2023-05-09) 阅读数 356 #高中

今天我要分享的文章是高中数学公式大全,同时呢也对高中数学公式大全 完整版进行说明,希望在下面的介绍中,能得到您想要的内容,咱们现在开始往下面说吧!

高中数学公式有哪些?

高巧山中数学公式如下:

1、cos(A-B) = cosAcosB+sinAsinB。

2、cot(A-B) = (cotAcotB+1)/(cotB-cotA)。

3、蚂游tan3a = tan a • tan(π/3+a)• tan(π/3-a)。闷宽销

4、sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)。

5、cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2]。

高中数学基本公式大全

寒窗苦读十余载,今朝考试展锋芒;思维冷静不慌乱,下笔如神才华展;心平气和信心足,过关斩将如流水;细心用心加耐心,努力备考,定会考亏塌入理想院校。接下来是我为大家整理的高中数学基本公式大全,希望大家喜欢!

   高中数学基本公式大全一

复合函数如何求导f[g(x)]中,设g(x)=u,则f[g(x)]=f(u),

从而(公式):f'[g(x)]=f'(u)_'(x)

呵呵,我们的老师写在黑板上时我一开始也看不懂,那就举个例子吧,耐心看哦!

f[g(x)]=sin(2x),则设g(x)=2x,令g(x)=2x=u,则f(u)=sin(u)

所以f'[g(x)]=[sin(u)]'_2x)'=2cos(u),再用2x代替u,得f'[g(x)]=2cos(2x).

以此类推y'=[cos(3x)]'=-3sin(x)

y'={sin(3-x)]'=-cos(x)

一开始会做不好,老是要对照公式和例子,

但只要多练练,并且熟记公式,ZUI重要的是记住一两个例子,多练习就会了。

复合函数求导法则证法一:先证明个引理

f(x)在点x0可导的充要条件是在x0的某邻域U(x0)内,存塌空滚在一个团余在点x0连续的函数H(x),使f(x)-f(x0)=H(x)(x-x0)从而f'(x0)=H(x0)

证明:设f(x)在x0可导,令 H(x)=[f(x)-f(x0)]/(x-x0),x∈U'(x0)(x0去心邻域);H(x)=f'(x0),x=x0

因lim(x-x0)H(x)=lim(x-x0)[f(x)-f(x0)]/(x-x0)=f'(x0)=H(x0)

所以H(x)在点x0连续,且f(x)-f(x0)=H(x)(x-x0),x∈U(x0)

反之,设存在H(x),x∈U(x0),它在点x0连续,且f(x)-f(x0)=H(x)(x-x0),x∈U(x0)

因存在极限lim(x-x0)H(x)=lim(x-x0)[f(x)-f(x0)]/(x-x0)=lim(x-x0)f'(x)=H(x0)

所以f(x)在点x0可导,且f'(x0)=H(x0)

引理证毕。

设u=φ(x)在点u0可导,y=f(u)在点u0=φ(x0)可导,则复合函数F(x)=f(φ(x))在x0可导,且F'(x0)=f'(u0)φ'(x0)=f'(φ(x0))φ'(x0)

证明:由f(u)在u0可导,由引理必要性,存在一个在点u0连续的函数H(u),使f'(u0)=H(u0),且f(u)-f(u0)=H(u)(u-u0)

又由u=φ(x)在x0可导,同理存在一个在点x0连续函数G(x),使φ'(x0)=G(x0),且φ(x)-φ(x0)=G(x)(x-x0)

于是就有,f(φ(x))-f(φ(x0))=H(φ(x))(φ(x)-φ(x0))=H(φ(x))G(x)(x-x0)

因为φ,G在x0连续,H在u0=φ(x0)连续,因此H(φ(x))G(x)在x0连续,再由引理的充分性可知F(x)在x0可导,且

F'(x0)=f'(u0)φ'(x0)=f'(φ(x0))φ'(x0)

证法二:y=f(u)在点u可导,u=g(x)在点x可导,则复合函数y=f(g(x))在点x0可导,且dy/dx=(dy/du)_du/dx)

证明:因为y=f(u)在u可导,则lim(Δu-0)Δy/Δu=f'(u)或Δy/Δu=f'(u)+α(lim(Δu-0)α=0)

当Δu≠0,用Δu乘等式两边得,Δy=f'(u)Δu+αΔu

但当Δu=0时,Δy=f(u+Δu)-f(u)=0,故上等式还是成立。

又因为Δx≠0,用Δx除以等式两边,且求Δx-0的极限,得

dy/dx=lim(Δx-0)Δy/Δx=lim(Δx-0)[f'(u)Δu+αΔu]/Δx=f'(u)lim(Δx-0)Δu/Δx+lim(Δx-0)αΔu/Δx

又g(x)在x处连续(因为它可导),故当Δx-0时,有Δu=g(x+Δx)-g(x)-0

则lim(Δx-0)α=0

ZUI终有dy/dx=(dy/du)_du/dx)

   高中数学基本公式大全二

1过两点有且只有一条直线

2两点之间线段ZUI短

3同角或等角的补角相等

4同角或等角的余角相等

5过一点有且只有一条直线和已知直线垂直

6直线外一点与直线上各点连接的所有线段中,垂线段ZUI短

7平行公理经过直线外一点,有且只有一条直线与这条直线平行

8如果两条直线都和第三条直线平行,这两条直线也互相平行

9同位角相等,两直线平行

10内错角相等,两直线平行

11同旁内角互补,两直线平行

12两直线平行,同位角相等

13两直线平行,内错角相等

14两直线平行,同旁内角互补

15定理三角形两边的和大于第三边

16推论三角形两边的差小于第三边

17三角形内角和定理三角形三个内角的和等于180°

18推论1直角三角形的两个锐角互余

19推论2三角形的一个外角等于和它不相邻的两个内角的和

20推论3三角形的一个外角大于任何一个和它不相邻的内角

21全等三角形的对应边、对应角相等

22边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等

23角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等

24推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等

25边边边公理(SSS)有三边对应相等的两个三角形全等

26斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等

27定理1在角的平分线上的点到这个角的两边的距离相等

28定理2到一个角的两边的距离相同的点,在这个角的平分线上

29角的平分线是到角的两边距离相等的所有点的集合

30等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)

31推论1等腰三角形顶角的平分线平分底边并且垂直于底边

32等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

33推论3等边三角形的各角都相等,并且每一个角都等于60°

34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

35推论1三个角都相等的三角形是等边三角形

36推论2有一个角等于60°的等腰三角形是等边三角形

37在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

38直角三角形斜边上的中线等于斜边上的一半

39定理线段垂直平分线上的点和这条线段两个端点的距离相等

   高中数学基本公式大全三

常用的诱导公式有以下几组:

公式一:

设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ+α)=sinα(k∈Z)

cos(2kπ+α)=cosα(k∈Z)

tan(2kπ+α)=tanα(k∈Z)

cot(2kπ+α)=cotα(k∈Z)

公式二:

设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

公式三:

任意角α与-α的三角函数值之间的关系:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

公式四:

利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

公式五:

利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

公式六:

π/2±α及3π/2±α与α的三角函数值之间的关系:

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα

tan(3π/2+α)=-cotα

cot(3π/2+α)=-tanα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα

(以上k∈Z)

注意:在做题时,将a看成锐角来做会比较好做。

诱导公式记忆口诀

※规律 总结 ※

上面这些诱导公式可以概括为:

对于π/2_±α(k∈Z)的三角函数值,

①当k是偶数时,得到α的同名函数值,即函数名不改变;

②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.

(奇变偶不变)

然后在前面加上把α看成锐角时原函数值的符号。

(符号看象限)

例如:

sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。

当α是锐角时,2π-α∈(270°,360°),sin(2π-α)0,符号为“-”。

所以sin(2π-α)=-sinα

上述的记忆口诀是:

奇变偶不变,符号看象限。

公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α

所在象限的原三角函数值的符号可记忆

水平诱导名不变;符号看象限。

#

各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦(余割);三两切;四余弦(正割)”.

这十二字口诀的意思就是说:

第一象限内任何一个角的四种三角函数值都是“+”;

第二象限内只有正弦是“+”,其余全部是“-”;

第三象限内切函数是“+”,弦函数是“-”;

第四象限内只有余弦是“+”,其余全部是“-”.

上述记忆口诀,一全正,二正弦,三内切,四余弦

#

还有一种按照函数类型分象限定正负:

函数类型第一象限第二象限第三象限第四象限

正弦...........+............+............—............—........

余弦...........+............—............—............+........

正切...........+............—............+............—........

余切...........+............—............+............—........

同角三角函数基本关系

同角三角函数的基本关系式

倒数关系:

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

商的关系:

sinα/cosα=tanα=secα/cscα

cosα/sinα=cotα=cscα/secα

平方关系:

sin^2(α)+cos^2(α)=1

1+tan^2(α)=sec^2(α)

1+cot^2(α)=csc^2(α)

同角三角函数关系六角形记忆法

六角形记忆法:(参看图片或参考资料链接)

构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。

(1)倒数关系:对角线上两个函数互为倒数;

(2)商数关系:六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。

(主要是两条虚线两端的三角函数值的乘积)。由此,可得商数关系式。

(3)平方关系:在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。

高中数学基本公式大全四

1、直线

两点距离、定比分点 直线方程

|AB|=| |

|P1P2|=

y-y1=k(x-x1)

y=kx+b

两直线的位置关系 夹角和距离

或k1=k2,且b1≠b2

l1与l2重合

或k1=k2且b1=b2

l1与l2相交

或k1≠k2

l2⊥l2

或k1k2=-1 l1到l2的角

l1与l2的夹角

点到直线的距离

2.圆锥曲线

圆 椭圆

标准方程(x-a)2+(y-b)2=r2

圆心为(a,b),半径为R

一般方程x2+y2+Dx+Ey+F=0

其中圆心为( ),

半径r

(1)用圆心到直线的距离d和圆的半径r判断或用判别式判断直线与圆的位置关系

(2)两圆的位置关系用圆心距d与半径和与差判断 椭圆

焦点F1(-c,0),F2(c,0)

(b2=a2-c2)

离心率

准线方程

焦半径|MF1|=a+ex0,|MF2|=a-ex0

双曲线 抛物线

双曲线

焦点F1(-c,0),F2(c,0)

(a,b0,b2=c2-a2)

离心率

准线方程

焦半径|MF1|=ex0+a,|MF2|=ex0-a抛物线y2=2px(p0)

焦点F

准线方程

坐标轴的平移

这里(h,k)是新坐标系的原点在原坐标系中的坐标。

高中数学基本公式大全相关 文章 :

1. 高一数学必背公式及知识汇总

2. 高中数学公式大汇总

3. 高一数学必修一公式大全

4. 高中数学公式大全

5. 常用数学公式大全

6. 高中数学的阶乘公式大全

7. 高中数学基础知识大全

8. 高中数学必修三公式汇总

9. 高中的全部数学公式

10. 高中数学公式汇总

高中必备数学公式是什么?

高中必备数学公式如下:

一、sinh-1 x dx = x sinh-1 x-+ C

二、cosh-1 x dx = x cosh-1 x-+ C

三、tanh-1 x dx = x tanh-1 x+ ln | 1-x2|+ C

四、coth-1 x dx = x coth-1 x- ln | 1-x2|+ C

五、sech-1 x dx = x sech-1 x- sin-1 x + C

六、csch-1 x dx = x csch-1 x+ sinh-1 x + C

七、sin 3θ=3sinθ-4sin3θ

八、cos3θ=4cos3θ-3cosθ

九、→sin3θ= (3sinθ-sin3θ)

十、→cos3θ= (3cosθ+cos3θ)

十一、sin (α±β)=sin α cos β ± cos α sin β

十二、cos (α±β)=cos α cos β sin α sin β

十三、2 sin α cos β = sin (α+β) + sin (α-β)

十四、尘陪2 cos α sin β = sin (α+β) - sin (α-β)

十五、2 cos α cos β = cos (α-β) + cos (α+β)

十六、2 sin α sin β = cos (α-β) - cos (α+β)

十七、sin α + sin β = 2 sin (α+β) cos (α-β)

十八、sin α - sin β = 2 cos (α+β) sin (α-β)

十九派物蠢、蚂皮cos α + cos β = 2 cos (α+β) cos (α-β)

二十、cos α - cos β = -2 sin (α+β) sin (α-β)

高中数学常用公式

高中数学的所有公式总结

1.三角函数公式表

同角三角函数的基本关系式

倒数关系: 商的关系: 平方关系:

tanα ·cotα=1

sinα ·cscα=1

cosα ·secα=1 sinα/cosα=tanα=secα/cscα

cosα/sinα=cotα=cscα/secα sin2α+cos2α=1

1+tan2α=sec2α

1+cot2α=csc2α

(六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。”)

诱导公式(口诀:奇变偶不变,符号看象限。)

sin(-α)=-sinα

cos(-α)=cosα tan(-α)=-tanα

cot(-α)=-cotα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=闷中tanα

sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα

tan(3π/2+α)=-cotα

cot(3π/2+α)=-tanα

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

sin(2kπ+α)=sinα

cos(2kπ+α)=cosα

tan(2kπ+α)=tanα

cot(2kπ+α)=cotα

(其中k∈Z)

两角和与差的三角函数公式 万能公式

sin(α+β)=sinαcosβ+cosαsinβ

sin(α-β)=sinαcosβ-cosαsinβ

cos(α+β)=cosαcosβ-sinαsinβ

cos(α-β)=cosαcosβ+sinαsinβ

tanα+tanβ

tan(α+β)=——————

1-tanα ·tanβ

tanα-tanβ

tan(α-β)=——————

1+tanα ·tanβ

2tan(α/2)

sinα=——————

1+tan2(α/2)

1-tan2(α/2)

cosα=——————

1+tan2(α/2)

2tan(α/2)

tanα=——————

1-tan2(α/2)

半角的正弦、余弦和正切公式 三角函数的降幂公式

二倍角的正弦、余弦和正切公式 三倍角的正弦、余弦和正切公式

sin2α=2sinαcosα

cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α

2tanα

tan2α=———谨拆——

1-tan2α

sin3α=3sinα-4sin3α

cos3α=4cos3α-3cosα

3tanα-tan3α

tan3α=——————

1-3tan2α

三角函数的和差化积公式 三角函数的积化和差公式

α+β α-β

sinα+sinβ=2sin———·cos———

2 2

α+β α-β

sinα-sinβ=2cos———·sin———

2 2

α+β α-β

cosα+cosβ=2cos———·cos———

2 2

α+β α-β

cosα-cosβ=-2sin———·sin———

2 2 1

sinα ·cosβ=-[sin(α+β)+sin(α-β)]

2

1

cosα ·sinβ=-[sin(α+蚂晌山β)-sin(α-β)]

2

1

cosα ·cosβ=-[cos(α+β)+cos(α-β)]

2

1

sinα ·sinβ=— -[cos(α+β)-cos(α-β)]

2

化asinα ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式

集合、函数

集合 简单逻辑

任一x∈A x∈B,记作A B

A B,B A A=B

A B={x|x∈A,且x∈B}

A B={x|x∈A,或x∈B}

card(A B)=card(A)+card(B)-card(A B)

(1)命题

原命题 若p则q

逆命题 若q则p

否命题 若 p则 q

逆否命题 若 q,则 p

(2)四种命题的关系

(3)A B,A是B成立的充分条件

B A,A是B成立的必要条件

A B,A是B成立的充要条件

函数的性质 指数和对数

(1)定义域、值域、对应法则

(2)单调性

对于任意x1,x2∈D

若x1<x2 f(x1)<f(x2),称f(x)在D上是增函数

若x1<x2 f(x1)>f(x2),称f(x)在D上是减函数

(3)奇偶性

对于函数f(x)的定义域内的任一x,若f(-x)=f(x),称f(x)是偶函数

若f(-x)=-f(x),称f(x)是奇函数

(4)周期性

对于函数f(x)的定义域内的任一x,若存在常数T,使得f(x+T)=f(x),则称f(x)是周期函数 (1)分数指数幂

正分数指数幂的意义是

负分数指数幂的意义是

(2)对数的性质和运算法则

loga(MN)=logaM+logaN

logaMn=nlogaM(n∈R)

指数函数 对数函数

(1)y=ax(a>0,a≠1)叫指数函数

(2)x∈R,y>0

图象经过(0,1)

a>1时,x>0,y>1;x<0,0<y<1

0<a<1时,x>0,0<y<1;x<0,y>1

a> 1时,y=ax是增函数

0<a<1时,y=ax是减函数 (1)y=logax(a>0,a≠1)叫对数函数

(2)x>0,y∈R

图象经过(1,0)

a>1时,x>1,y>0;0<x<1,y<0

0<a<1时,x>1,y<0;0<x<1,y>0

a>1时,y=logax是增函数

0<a<1时,y=logax是减函数

指数方程和对数方程

基本型

logaf(x)=b f(x)=ab(a>0,a≠1)

同底型

logaf(x)=logag(x) f(x)=g(x)>0(a>0,a≠1)

换元型 f(ax)=0或f (logax)=0

数列

数列的基本概念 等差数列

(1)数列的通项公式an=f(n)

(2)数列的递推公式

(3)数列的通项公式与前n项和的关系

an+1-an=d

an=a1+(n-1)d

a,A,b成等差 2A=a+b

m+n=k+l am+an=ak+al

等比数列 常用求和公式

an=a1qn_1

a,G,b成等比 G2=ab

m+n=k+l aman=akal

不等式

不等式的基本性质 重要不等式

a>b b<a

a>b,b>c a>c

a>b a+c>b+c

a+b>c a>c-b

a>b,c>d a+c>b+d

a>b,c>0 ac>bc

a>b,c<0 ac<bc

a>b>0,c>d>0 ac<bd

a>b>0 dn>bn(n∈Z,n>1)

a>b>0 > (n∈Z,n>1)

(a-b)2≥0

a,b∈R a2+b2≥2ab

|a|-|b|≤|a±b|≤|a|+|b|

证明不等式的基本方法

比较法

(1)要证明不等式a>b(或a<b),只需证明

a-b>0(或a-b<0=即可

(2)若b>0,要证a>b,只需证明 ,

要证a<b,只需证明

综合法 综合法就是从已知或已证明过的不等式出发,根据不等式的性质推导出欲证的不等式(由因导果)的方法。

分析法 分析法是从寻求结论成立的充分条件入手,逐步寻求所需条件成立的充分条件,直至所需的条件已知正确时为止,明显地表现出“持果索因”

复数

代数形式 三角形式

a+bi=c+di a=c,b=d

(a+bi)+(c+di)=(a+c)+(b+d)i

(a+bi)-(c+di)=(a-c)+(b-d)i

(a+bi)(c+di )=(ac-bd)+(bc+ad)i

a+bi=r(cosθ+isinθ)

r1=(cosθ1+isinθ1)•r2(cosθ2+isinθ2)

=r1•r2〔cos(θ1+θ2)+isin(θ1+θ2)〕

〔r(cosθ+sinθ)〕n=rn(cosnθ+isinnθ)

k=0,1,……,n-1

解析几何

1、直线

两点距离、定比分点 直线方程

|AB|=| |

|P1P2|=

y-y1=k(x-x1)

y=kx+b

两直线的位置关系 夹角和距离

或k1=k2,且b1≠b2

l1与l2重合

或k1=k2且b1=b2

l1与l2相交

或k1≠k2

l2⊥l2

或k1k2=-1 l1到l2的角

l1与l2的夹角

点到直线的距离

2.圆锥曲线

圆 椭 圆

标准方程(x-a)2+(y-b)2=r2

圆心为(a,b),半径为R

一般方程x2+y2+Dx+Ey+F=0

其中圆心为( ),

半径r

(1)用圆心到直线的距离d和圆的半径r判断或用判别式判断直线与圆的位置关系

(2)两圆的位置关系用圆心距d与半径和与差判断 椭圆

焦点F1(-c,0),F2(c,0)

(b2=a2-c2)

离心率

准线方程

焦半径|MF1|=a+ex0,|MF2|=a-ex0

双曲线 抛物线

双曲线

焦点F1(-c,0),F2(c,0)

(a,b>0,b2=c2-a2)

离心率

准线方程

焦半径|MF1|=ex0+a,|MF2|=ex0-a 抛物线y2=2px(p0)

焦点F

准线方程

坐标轴的平移

这里(h,k)是新坐标系的原点在原坐标系中的坐标

高中数学公式大全

1、集合与常用逻辑用语

2、 复数

3、 平面向量

4、 算法、推理与证明

5、不等式、线性规划

6、 计数原理与二含亮逗项式定理

7、 函数、基本初等函数的图像与性质

8、函数与方程、函数模型及其应用

9、导数谈卖及其应用

10、三角函数的图键前形与性质

11、三角恒等变化与解三角形

12、等差数列、等比数列

13、数列求和及数列的简单应用

14、空间几何体

15、空间点、直线、平面位置关系

16、空间向量与立体几何

17、直线与圆的方程

18、圆锥曲线的定义、方程与性质

参考资料:百度-2020高中数学必备公式大全

高中数学常用公式有哪些?

高中数学基本公式

抛物线:y = ax *+ bx + c

a 0时开口向上a 0时开口向下

c = 0时抛物线经过原点 b = 0时抛链宏物线对称轴为y轴

还有顶点式y = a(x+h)* + k

-h是顶点坐标的x k是顶点坐标的y一般用于求ZUI大值与ZUI小值

抛物线标准棚掘册方程:y^2=2px

它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2

由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py

圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标

圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F0

三角函数:两角和公式

sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA)

倍角公式

tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cota

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0

cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+…+cos[α+2π*(n-1)/n]=0 以及

sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

•万能公式:

sinα=2tan(α/2)/[1+tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

半角公式

sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))

和差化积

2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/散判2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

cotA+cotBsin(A+B)/sinAsinB -cotA+cotBsin(A+B)/sinAsinB

某些数列前n项和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1) 1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6

1^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^2 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径

余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角

乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

根与系数的关系 x1+x2=-b/a x1*x2=c/a 注:韦达定理

公式分类 公式表达式

圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标

圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F0

抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py

直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h

正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'

圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2

圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l

弧长公式 l=a*r a是圆心角的弧度数r 0 扇形面积公式 s=1/2*l*r

锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h

斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长

柱体体积公式 V=s*h 圆柱体 V=pi*r2h

已知三角形三边a,b,c,半周长p,则S= √[p(p - a)(p - b)(p - c)] (海伦公式)(p=(a+b+c)/2)

和:(a+b+c)*(a+b-c)*1/4

已知三角形两边a,b,这两边夹角C,则S=absinC/2

设三角形三边分别为a、b、c,内切圆半径为r 则三角形面积=(a+b+c)r/2

设三角形三边分别为a、b、c,外接圆半径为r则三角形面积=abc/4r

001任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值

002任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值

003到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

004和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线

005到已知角的两边距离相等的点的轨迹,是这个角的平分线

006到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线

007定理 不在同一直线上的三点确定一个圆。

008垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧

009①直线l和⊙o相交 d<r ②直线l和⊙o相切 d=r ③直线l和⊙o相离 d>r

010①两圆外离 d>r+r ②两圆外切 d=r+r

③两圆相交 r-r<d<r+r(r>r)

④两圆内切 d=r-r(r>r) ⑤两圆内含d<r-r(r>r)

011正n边形的面积sn=pnrn/2 p表示正n边形的周长

012正三角形面积√3a/4 a表示边长

013弧长计算公式:l=nπr/180

014扇形面积公式:s扇形=nπr2/360=lr/2

版权声明

本文仅代表作者观点,不代表xx立场。
本文系作者授权xx发表,未经许可,不得转载。

热门